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ttach one or two magnets to a non-magnetic and non-conductive base such that they
attract a magnet suspended from a string. The magnetic pendulum is a striking
example of unpredictability in classical physics; a magnetic bob suspended above
fixed magnets on a non-magnetic surface exhibits chaotic motion when released. In this study, we

investigate the parameters affecting the motion of the moving magnet.
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1. Introduction

The magnetic pendulum is a striking example of
unpredictability in classical physics; a magnetic bob
suspended above fixed magnets on a non-magnetic surface
exhibits chaotic motion when released. In this study, we
investigate the parameters affecting the motion of the
moving magnet.

Guiding questions are intended as inspiration for
beginning our projectas :

. How is the magnetic pendulum influenced by the
other magnets?

. What forces are at work?

. the instruction and arrangement the magnets
should attract each other?

. An arrangement that "supports" the pendulum
for example to increase the amplitude beyond the starting
amplitude?

In a magnetic pendulum many small rotating magnetic
dipoles (on the left, ) can create an effective macroscopic
field, (on the right). This effective field can exert a torque or
lateral force on the moving magnet, leading to rotational or
orbit-like motion, which is what we observe
experimentally.

Fig.1: Magnetic dipoles and microscopic field

Three phases should be considered as :

Phasel. Perturbation Initiation

Phase2. Dynamic Oscillation

Phase3. Equilibrium Stabilization

Now suppose the pendulum consists of a magnet
suspended from a string. The plane under the pendulum
contains a distribution of like magnets which, based on
their number and placement, should affect the dynamics of
the pendulum.

Here again external forces are ;

Magnetic Force, Drag Force, Gravitational Force and
String Tension Force (Fig.2).

Fr

Fig.2: External Forces

2. Quantitative Analysis

In this setup, the magnetic field is generated by
permanent magnets fixed on a non-magnetic base. The
field depends on the shape, size, and orientation of the
magnets, as well as their distance from the suspended
magnet.

Magnetic Field:

2 Vector Analysis

Biot-Savart law
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Fig.3: Magnetic Field

The source of the field is the internal magnetic structure
of the materials, which creates a specific pattern in space.
This field interacts with the suspended magnet and causes
it to move, oscillate, or stabilize depending on its position
and initial motion.

m = ﬂ M dv  Dipole Characterization
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Dipole Magnet
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The magnetic field of a dipole depends on its direction
and the position of the observation point.
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The magnetic force acting on the magnet is calculated by
integrating the interaction between the surface
magnetization and the magnetic field. This interaction
varies across the surface depending on direction and local
field strength. The total force is obtained by summing
contributions from all surface elements in spherical
coordinates.

This result helps explain how the suspended magnet is
pulled or pushed depending on its orientation and position.

spherical coordinates

B = B,f +Bgb + By
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The equations describe how the magnet swings on a
spherical path, with 6 and ¢ influencing each other. Their
coupling reflects the complex angular dynamics of the
motion. !
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Gravitational Force:

b, = _Tgsine

String Tension Force:
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These expressions calculate the distance between the
suspended magnet and the fixed base magnets as a
function of the angle 0 (Fig. 4).

As the magnet swings, both the vertical and horizontal
components change, affecting the magnetic.

Tg = ’(l sin6)2+h3

hg =d +1(1—cos®)

Fig. 4: Applied forces during motion

We considered the moment of inertia of the object as
rigid. The sum of'the torques are:
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Gravational Force

Extrnal Torque
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Moment of Inertia

Ig = mlz

I, = ml?sin® 6

where;

m = mass of magnet

| = length of string

¢ = damping coef ficient

d = distance between tow top & down magnet

Y; = The influence coef ficient on the magnetic field

The plotted graph is based on the equations of motion.
Azimuth and zenith angles versus time are plotted from the
theory. Then using the position of the pendulum, we
rewrote the equations and determined the angle formed by
the magnet.
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Azimuthangle () 3.Experiment & Results
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Fig. 5: Two different azimuth and zenith angles versus time

Dynamic Oscillation and the equations to determined

the angle formed by the magnet as follows: eachitems (Fig. 9).

Fig. 8: Swinging of the magnet from top and side views

The experimental setup diagram shows exact places of
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amplitude suggests a constant resistive force and The
alignment with the analytical model strengthens the
results' validity and the dynamic model's accuracy.
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The chart shows the oscillations of the damped system, I /i
by the gradual decrease in amplitude over time (Fig. 6). }]
The stable oscillation frequency despite the decreasing /]
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Fig. 9: Schematic of each item

. The magnetic field is measured by using a Hall sensor at
various angles and distances and damping Coefficient is
calculated based on the Logarithmic Decay of Maximum
Angular Displacement Over Time".

» Distance of the pendulum from the pivot
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Fig. 6: The oscillation of the damped system
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» Horizontal Angle of the Pendulum Relative to the Vertical Axis
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The initial experiments are tracked by tracker.
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Fig. 10: Tracking the pendulum

The phases are identified based on the amplitude of
oscillation (Fig. 11).

Given the low damping coefficient, the system does not
come to rest within the observed time interval; however, a
gradual decrease in amplitude is evident.
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Fig. 11: Different phases

The same effect is clearly observable in the

displacement-time graph, where the gradual decay of

amplitude due to low damping is evident (Fig. 12).
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Fig. 12: Displacement
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(3) Eauilibrium Stabilization

We measured the oscillation period over a defined time
interval. However, due to the non-uniformity of the period
across different phases, the simple harmonic motion
equation is not applicable. Consequently, a modified
equation was formulated to account for the time-
dependent variation of the period, influenced by the
pendulum's dynamics and the magnetic field ( Fig. 13).
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Fig. 13: Displacement vs time

Alternating period:
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To compare pendulum angle in experiment and theory
two angles, azimuth and zenith, are plotted versus time
(Fig. 14).
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Fig. 14: Comparing azimuth and zenith angles by experiment vs
theory
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Dynamic Oscillation

Y(m)VS X (m)Experiment

150601

Y(m)VS X (m) (Simulation)

Equilibrium Stabilization

Y(m)VS X(m)Experiment Y(m)VS X(m) (Simulation)

This phenomenon involves the superposition of
gravitational and magnetic potential wells. A three-
dimensional plot of the combined potential illustrates that
gravity forms an upward parabolic profile, whereas the
magnetic field introduces a downward parabolic potential
centered around the magnet's position (Fig.15).
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Fig. 15: Potential Hills

When the distance of the magnet increases, the magnetic
potential decreases, and the gravitational potential
increases. However, when the distance exceeds 8 cm, the
magnetic field becomes weak, and the potential becomes
3rd Order (Fig. 16).
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Fig. 16: Potential Hills , 3rd order

4.Parameters Analysis

There are different parameters in this phenomenon
which should be considered.

A. Number of Magnets

By increasing the number of magnets, the system reaches
a damped state faster and has more damping. However, the
pendulum only settles within the magnetic field radius of
one of the magnets to reach a stable state, which is why the
graph appears this way (Fig. 17).

2l bl

n;(‘ww \m xw; TP Doy

;‘9‘/ ad

t/s

n' ‘M f\\ M AL | AMASAMA AR AN s
T

00 “ w ‘Ju\‘/ \ [l 0 0 50 © o %

t/s

v

Fig. 17: The effect of number of magnets

B. Distance of the Magnets

In the plot of maximum angular velocity versus distance
from the magnet, chaotic motion is observed up to a
distance of 3 cm. Beyond this point, the motion becomes
non-chaotic. The chaotic behavior is caused by the
interference of the magnetic fields of the two magnets,
which was confirmed in the experiment using a magnetic
field mapping sheet (Fig. 18).

Wmax(rad/s)

| Chaotic Region |

Fig. 18: Distance of the magnets

C.Initial Dropping

According to the theory, the motion follows a
logarithmic behavior, which was also observed
experimentally. When the data were fitted together, a good
agreement between the theoretical prediction and the
experimental results was obtained (Fig. 19).
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Fig. 19: Initial dropping

D. Distance Between 2 Magnets Down & Top
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[2]

[3]
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In this section, the first 10 seconds of the graph were
plotted, and the amplitudes were compared. The
theoretical motion equation was fitted to the experimental
data, resulting in a good fit (Fig. 20).
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Fig. 20: Angle vs time in different positions of magnets

Frequency is inversely related to the period. Therefore,
to plot the theoretical curve, the inverse of the period
equation was used (Fig. 21).
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Fig. 21: Frequency Vs the Length of the String

4 J‘Hmux de
0 2mB

-1
T8 (05(6) ~ cos(Bpae) + 202 [c05(6 ~ ) ~ co5(Bes ~ BE)]]

fo=

5. Conclusion

. The magnetic field was derived in three-
dimensional spherical coordinates

. By the Lorentz force the magnetic force and the
term for the matrix of the interaction of magnets were
calculated.

. Equation of motion was derived

. Six main parameters were checked and
controlled

. Magnetic filed was measured by Hall Effect
Sensor

. Damping and drag coefficient were measure

d Based on the fit between theory and experiment, it
can be concluded that in the first setup, the
equations used exhibit high numerical accuracy,
and the tests performed involve a well-designed

setup with minimal error.
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